Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cellotriose and cellotetraose as inducers of the genes encoding cellobiohydrolases in the basidiomycete Phanerochaete chrysosporium.

Identifieur interne : 000583 ( Main/Exploration ); précédent : 000582; suivant : 000584

Cellotriose and cellotetraose as inducers of the genes encoding cellobiohydrolases in the basidiomycete Phanerochaete chrysosporium.

Auteurs : Hitoshi Suzuki [Japon] ; Kiyohiko Igarashi ; Masahiro Samejima

Source :

RBID : pubmed:20656867

Descripteurs français

English descriptors

Abstract

The wood decay basidiomycete Phanerochaete chrysosporium produces a variety of cellobiohydrolases belonging to glycoside hydrolase (GH) families 6 and 7 in the presence of cellulose. However, no inducer of the production of these enzymes has yet been identified. Here, we quantitatively compared the transcript levels of the genes encoding GH family 6 cellobiohydrolase (cel6A) and GH family 7 cellobiohydrolase isozymes (cel7A to cel7F/G) in cultures containing glucose, cellulose, and cellooligosaccharides by real-time quantitative PCR, in order to evaluate the transcription-inducing effect of soluble sugars. Upregulation of transcript levels in the presence of cellulose compared to glucose was observed for cel7B, cel7C, cel7D, cel7F/G, and cel6A at all time points during cultivation. In particular, the transcription of cel7C and cel7D was strongly induced by cellotriose or cellotetraose. The highest level of cel7C transcripts was observed in the presence of cellotetraose, whereas the highest level of cel7D transcripts was found in the presence of cellotriose, amounting to 2.7 x 10(6) and 1.7 x 10(6) copies per 10(5) actin gene transcripts, respectively. These numbers of cel7C and cel7D transcripts were higher than those in the presence of cellulose. In contrast, cellobiose had a weaker transcription-inducing effect than either cellotriose or cellotetraose for cel7C and had little effect in the case of cel7D. These results indicate that cellotriose and cellotetraose, but not cellobiose, are possible natural cellobiohydrolase gene transcription inducers derived from cellulose.

DOI: 10.1128/AEM.00724-10
PubMed: 20656867
PubMed Central: PMC2937500


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cellotriose and cellotetraose as inducers of the genes encoding cellobiohydrolases in the basidiomycete Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Suzuki, Hitoshi" sort="Suzuki, Hitoshi" uniqKey="Suzuki H" first="Hitoshi" last="Suzuki">Hitoshi Suzuki</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
<orgName type="university">Université de Tokyo</orgName>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="province">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Igarashi, Kiyohiko" sort="Igarashi, Kiyohiko" uniqKey="Igarashi K" first="Kiyohiko" last="Igarashi">Kiyohiko Igarashi</name>
</author>
<author>
<name sortKey="Samejima, Masahiro" sort="Samejima, Masahiro" uniqKey="Samejima M" first="Masahiro" last="Samejima">Masahiro Samejima</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20656867</idno>
<idno type="pmid">20656867</idno>
<idno type="doi">10.1128/AEM.00724-10</idno>
<idno type="pmc">PMC2937500</idno>
<idno type="wicri:Area/Main/Corpus">000545</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000545</idno>
<idno type="wicri:Area/Main/Curation">000545</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000545</idno>
<idno type="wicri:Area/Main/Exploration">000545</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cellotriose and cellotetraose as inducers of the genes encoding cellobiohydrolases in the basidiomycete Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Suzuki, Hitoshi" sort="Suzuki, Hitoshi" uniqKey="Suzuki H" first="Hitoshi" last="Suzuki">Hitoshi Suzuki</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
<orgName type="university">Université de Tokyo</orgName>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="province">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Igarashi, Kiyohiko" sort="Igarashi, Kiyohiko" uniqKey="Igarashi K" first="Kiyohiko" last="Igarashi">Kiyohiko Igarashi</name>
</author>
<author>
<name sortKey="Samejima, Masahiro" sort="Samejima, Masahiro" uniqKey="Samejima M" first="Masahiro" last="Samejima">Masahiro Samejima</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cellulose (analogs & derivatives)</term>
<term>Cellulose (pharmacology)</term>
<term>Cellulose 1,4-beta-Cellobiosidase (genetics)</term>
<term>DNA Primers (genetics)</term>
<term>Genes, Fungal (genetics)</term>
<term>Glucose (pharmacology)</term>
<term>Phanerochaete (genetics)</term>
<term>Phanerochaete (metabolism)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (MeSH)</term>
<term>Tetroses (pharmacology)</term>
<term>Transcriptional Activation (drug effects)</term>
<term>Transcriptional Activation (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation de la transcription (effets des médicaments et des substances chimiques)</term>
<term>Activation de la transcription (génétique)</term>
<term>Amorces ADN (génétique)</term>
<term>Cellulose (analogues et dérivés)</term>
<term>Cellulose (pharmacologie)</term>
<term>Cellulose 1,4-beta-cellobiosidase (génétique)</term>
<term>Glucose (pharmacologie)</term>
<term>Gènes fongiques (génétique)</term>
<term>Phanerochaete (génétique)</term>
<term>Phanerochaete (métabolisme)</term>
<term>RT-PCR (MeSH)</term>
<term>Tétroses (pharmacologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Cellulose</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cellulose 1,4-beta-Cellobiosidase</term>
<term>DNA Primers</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Cellulose</term>
<term>Glucose</term>
<term>Tetroses</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Cellulose</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Transcriptional Activation</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Activation de la transcription</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Genes, Fungal</term>
<term>Phanerochaete</term>
<term>Transcriptional Activation</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Activation de la transcription</term>
<term>Amorces ADN</term>
<term>Cellulose 1,4-beta-cellobiosidase</term>
<term>Gènes fongiques</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Cellulose</term>
<term>Glucose</term>
<term>Tétroses</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>RT-PCR</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The wood decay basidiomycete Phanerochaete chrysosporium produces a variety of cellobiohydrolases belonging to glycoside hydrolase (GH) families 6 and 7 in the presence of cellulose. However, no inducer of the production of these enzymes has yet been identified. Here, we quantitatively compared the transcript levels of the genes encoding GH family 6 cellobiohydrolase (cel6A) and GH family 7 cellobiohydrolase isozymes (cel7A to cel7F/G) in cultures containing glucose, cellulose, and cellooligosaccharides by real-time quantitative PCR, in order to evaluate the transcription-inducing effect of soluble sugars. Upregulation of transcript levels in the presence of cellulose compared to glucose was observed for cel7B, cel7C, cel7D, cel7F/G, and cel6A at all time points during cultivation. In particular, the transcription of cel7C and cel7D was strongly induced by cellotriose or cellotetraose. The highest level of cel7C transcripts was observed in the presence of cellotetraose, whereas the highest level of cel7D transcripts was found in the presence of cellotriose, amounting to 2.7 x 10(6) and 1.7 x 10(6) copies per 10(5) actin gene transcripts, respectively. These numbers of cel7C and cel7D transcripts were higher than those in the presence of cellulose. In contrast, cellobiose had a weaker transcription-inducing effect than either cellotriose or cellotetraose for cel7C and had little effect in the case of cel7D. These results indicate that cellotriose and cellotetraose, but not cellobiose, are possible natural cellobiohydrolase gene transcription inducers derived from cellulose.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20656867</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>01</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>76</Volume>
<Issue>18</Issue>
<PubDate>
<Year>2010</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Cellotriose and cellotetraose as inducers of the genes encoding cellobiohydrolases in the basidiomycete Phanerochaete chrysosporium.</ArticleTitle>
<Pagination>
<MedlinePgn>6164-70</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.00724-10</ELocationID>
<Abstract>
<AbstractText>The wood decay basidiomycete Phanerochaete chrysosporium produces a variety of cellobiohydrolases belonging to glycoside hydrolase (GH) families 6 and 7 in the presence of cellulose. However, no inducer of the production of these enzymes has yet been identified. Here, we quantitatively compared the transcript levels of the genes encoding GH family 6 cellobiohydrolase (cel6A) and GH family 7 cellobiohydrolase isozymes (cel7A to cel7F/G) in cultures containing glucose, cellulose, and cellooligosaccharides by real-time quantitative PCR, in order to evaluate the transcription-inducing effect of soluble sugars. Upregulation of transcript levels in the presence of cellulose compared to glucose was observed for cel7B, cel7C, cel7D, cel7F/G, and cel6A at all time points during cultivation. In particular, the transcription of cel7C and cel7D was strongly induced by cellotriose or cellotetraose. The highest level of cel7C transcripts was observed in the presence of cellotetraose, whereas the highest level of cel7D transcripts was found in the presence of cellotriose, amounting to 2.7 x 10(6) and 1.7 x 10(6) copies per 10(5) actin gene transcripts, respectively. These numbers of cel7C and cel7D transcripts were higher than those in the presence of cellulose. In contrast, cellobiose had a weaker transcription-inducing effect than either cellotriose or cellotetraose for cel7C and had little effect in the case of cel7D. These results indicate that cellotriose and cellotetraose, but not cellobiose, are possible natural cellobiohydrolase gene transcription inducers derived from cellulose.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Suzuki</LastName>
<ForeName>Hitoshi</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Igarashi</LastName>
<ForeName>Kiyohiko</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Samejima</LastName>
<ForeName>Masahiro</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>07</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017931">DNA Primers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013780">Tetroses</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>38819-01-1</RegistryNumber>
<NameOfSubstance UI="C048468">cellotetraose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9004-34-6</RegistryNumber>
<NameOfSubstance UI="D002482">Cellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.91</RegistryNumber>
<NameOfSubstance UI="D043366">Cellulose 1,4-beta-Cellobiosidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IY9XDZ35W2</RegistryNumber>
<NameOfSubstance UI="D005947">Glucose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002482" MajorTopicYN="N">Cellulose</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D043366" MajorTopicYN="N">Cellulose 1,4-beta-Cellobiosidase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017931" MajorTopicYN="N">DNA Primers</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="N">Genes, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013780" MajorTopicYN="N">Tetroses</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015533" MajorTopicYN="N">Transcriptional Activation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>7</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>7</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>1</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20656867</ArticleId>
<ArticleId IdType="pii">AEM.00724-10</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.00724-10</ArticleId>
<ArticleId IdType="pmc">PMC2937500</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 2008 Sep;74(18):5628-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18676702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1995 Oct;61(10):3741-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7487009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1987;51(1):43-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3596237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Jul 22;265(5171):524-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8036495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1993 Oct;59(10):3492-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8250570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 Jun;22(6):695-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1979 Apr 1;179(1):141-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">573117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Apr 11;272(15):10169-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9092563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1998 May;64(5):1924-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9572973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2009 Jun;55(3):273-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19396602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1994 Dec;60(12):4387-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7811079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Microb Physiol. 1995;37:1-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8540419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1996 Jun 1;316 ( Pt 2):695-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8687420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Aug;86(16):6138-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2762318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2006 Dec;73(4):807-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16896601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2007 Sep;153(Pt 9):3023-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17768245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2006 May;43(5):343-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16524749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1992 Apr 1;205(1):133-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1555575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Dec 14;314(5):1097-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1993 Jun;139 Pt 6:1219-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8360615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1979 Sep;139(3):761-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">39061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2007 Oct;76(5):1069-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17641888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Jun;75(12):4058-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19376920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Sep;179(17):5318-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9286982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1999 Jun;65(6):2636-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10347054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci Bioeng. 2001;92(4):305-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16233102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 1990 Oct;34(1):26-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1366972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1962 Feb;83:400-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14469205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1980 Dec;144(3):1197-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6777367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2007 Sep;274(2):218-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17608693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1960 Jun;79:816-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14420566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1954 Jan 15;119(3081):80-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17840525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2009 Oct;299(2):159-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19709307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1998 Mar 3;1383(1):48-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9546045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1995 Jun;61(6):2358-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7793956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1992 Jul;58(7):2168-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1637155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1991 Dec 1;280 ( Pt 2):309-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1747104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 1997 Oct;7(5):637-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9345621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1995 Sep 15;3(9):853-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8535779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1992 Nov;22(5):407-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1423728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1986;45(3):253-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2948877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 17;102(20):7321-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15883376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1996 Dec 1;242(2):332-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8973652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1978 Sep 15;90(1):171-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">710416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2005 Jul 21;118(1):17-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15888348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2008 Aug;80(1):99-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18566809</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
<region>
<li>Région de Kantō</li>
</region>
<settlement>
<li>Tokyo</li>
</settlement>
<orgName>
<li>Université de Tokyo</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Igarashi, Kiyohiko" sort="Igarashi, Kiyohiko" uniqKey="Igarashi K" first="Kiyohiko" last="Igarashi">Kiyohiko Igarashi</name>
<name sortKey="Samejima, Masahiro" sort="Samejima, Masahiro" uniqKey="Samejima M" first="Masahiro" last="Samejima">Masahiro Samejima</name>
</noCountry>
<country name="Japon">
<region name="Région de Kantō">
<name sortKey="Suzuki, Hitoshi" sort="Suzuki, Hitoshi" uniqKey="Suzuki H" first="Hitoshi" last="Suzuki">Hitoshi Suzuki</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000583 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000583 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20656867
   |texte=   Cellotriose and cellotetraose as inducers of the genes encoding cellobiohydrolases in the basidiomycete Phanerochaete chrysosporium.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20656867" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020